3 research outputs found

    Comparison of polymerase chain reaction and bacterial culture for Salmonella detection in the Muscovy duck in Trinidad and Tobago

    Get PDF
    Objectives: The purpose of this study was to investigate the presence and serovar identity of Salmonella, at the national level, in farmed Muscovy ducks (Cairina moschata) in Trinidad and Tobago, and to compare the relative benefits of bacterial culture to those of polymerase chain reaction (PCR) for use in the routine detection and surveillance of Salmonella in these ducks. Methods: From March-September 2003, 110 fecal samples were collected from 82 farms across the islands of Trinidad and Tobago. Salmonella was isolated from fresh and frozen samples and the serotype of each was determined through bacterial culture. An in-house, nested PCR that detects all pathogenic Salmonella species was utilized in analyzing the samples. Results: Five samples were positive for Salmonella by bacterial culture, whereas 44 were positive by the nested PCR. Serovars isolated were Kiambu, Orion, Uganda, and two isolates from Group E1 whose H antigens could not be fully characterized. Of the samples, 87 (79%) gave equivalent PCR results for both enrichment broths-28 were positive for both and 59 were negative for both). However, 16 samples were positive for one broth, but not for the other, with the majority (14 of the 16) resulting positive for Selenite broth. PCR results for seven samples were inconclusive due to ambiguous band size or multiple bands near the expected band size. Conclusions: In Trinidad and Tobago, the Muscovy duck does not appear to be a significant source of S. typhimurium or S. enteritidis, but it does harbor other Salmonella species. In-house, nested PCR represents a simple, relatively inexpensive and potentially more sensitive method than bacterial culture for the routine surveillance of pathogenic Salmonella in the Muscovy duck

    A nested-PCR with an Internal Amplification Control for the detection and differentiation of Bartonella henselae and B. clarridgeiae: An examination of cats in Trinidad

    Get PDF
    BACKGROUND: Bartonella species are bacterial blood parasites of animals capable of causing disease in both animals and man. Cat-Scratch Disease (CSD) in humans is caused mainly by Bartonella henselae and is acquired from the cat, which serves as a reservoir for the bacteria. A second species, B. clarridgeiae is also implicated in the disease. Diagnosis of Bartonellosis by culture requires a week or more of incubation on enriched media containing blood, and recovery is often complicated by faster growing contaminating bacteria and fungi. PCR has been explored as an alternative to culture for both the detection and species identification of Bartonella, however sensitivity problems have been reported and false negative reactions due to blood inhibitors have not generally been addressed in test design. METHODS: A novel, nested-PCR was designed for the detection of Bartonella henselae and B. clarridgeiae based on the strategy of targeting species-specific size differences in the 16S-23S rDNA intergenic regions. An Internal Amplification Control was used for detecting PCR inhibition. The nested-PCR was utilized in a study on 103 blood samples from pet and stray cats in Trinidad. RESULTS: None of the samples were positive by primary PCR, but the Nested-PCR detected Bartonella in 32/103 (31%) cats where 16 were infected with only B. henselae, 13 with only B. clarridgeiae and 3 with both species. Of 22 stray cats housed at an animal shelter, 13 (59%) were positive for either or both species, supporting the reported increased incidence of Bartonella among feral cats. CONCLUSION: The usefulness of a single PCR for the detection of Bartonella henselae and B. clarridgeiae in the blood of cats is questionable. A nested-PCR offers increased sensitivity over a primary PCR and should be evaluated with currently used methods for the routine detection and speciation of Bartonella henselae and B. clarridgeiae. In Trinidad, B. henselae and B. clarridgeiae are the predominant species in cats and infection appears highest with stray cats, however B. clarridgeiae may be present at levels similar to that of B. henselae in the pet population

    An investigation of bacillus thuringiensis in rectal-collected fecal samples of cows

    No full text
    In order to better understand the range and role of Bacillus thuringiensis (Bt) and its toxins in nature, we have undertaken a study of Bt taken directly from the rectum of 117 cows from 37 farms on the Caribbean island of Trinidad. Thirty-seven fecal samples (32%) were found to contain at least one Bt. Generally only one or two isolates with a particular crystal morphology were isolated from any one sample, however, a few samples contained more, up to 11 isolates, suggesting post-ingestion amplification. Bioassays using larvae of Musca domestica, Caenorhabditis elegans and Tetrahymena pyriformis showed no observable toxicity in gross bioassays. Very small dot-like parasporal bodies, not generally characteristic of Bt, were isolated from 44% of the samples, which in many instances appeared unstable and whose relation to Bt Cry protein-containing parasporal bodies is unknown. In conclusion, we find little evidence for a host adapted strain of Bt in the cows examined, nor toxicity to organisms that might logically be associated with either the cow or its feces. The presence of a large number of isolates containing small dot-like parasporal bodies, possibly either poly-beta-hydroxybutyrate storage bodies or Cry proteins, was unexpected and merits further investigation
    corecore